martes, 28 de noviembre de 2017

Maquinas Termicas

Una máquina térmica es un conjunto de elementos mecánicos que permite intercambiar energía, generalmente a través de un eje, mediante la variación de energía de un fluido que varía su densidadsignificativamente al atravesar la máquina. Se trata de una máquina de fluido en la que varía el volumen específico del fluido en tal magnitud que los efectos mecánicos y los efectos térmicos son interdependientes.
Por el contrario, en una máquina hidráulica, que es otro tipo de máquina de fluido, la variación de densidad es suficientemente pequeña como para poder desacoplar el análisis de los efectos mecánicos y el análisis de los efectos térmicos, llegando a despreciar los efectos térmicos en gran parte de los casos. Tal es el caso de una bomba hidráulica, a través de la cual pasa líquido. Alejándose de lo que indica la etimología de la palabra «hidráulica», también puede considerarse como máquina hidráulica un ventilador, pues, aunque el aire es un fluido compresible, la variación de volumen específico no es muy significativa con el propósito de que no se desprenda la capa límite.
En una máquina térmica, la compresibilidaddel fluido no es despreciable y es necesario considerar su influencia en la transformación de energía.

Energía Interna

En física, la energía interna (U) de un sistema intenta ser un reflejo de la energía a escala macroscópica. Más concretamente, es la suma de:
  • la energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que forman un cuerpo respecto al centro de masas del sistema,
  • la energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades.[1]
La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo.
Todo cuerpo posee una energía acumulada en su interior equivalente a la energía cinética interna más la energía potencial interna.
Si pensamos en constituyentes atómicos o moleculares, será el resultado de la suma de la energía cinética de las moléculas o átomosque constituyen el sistema (de sus energías de traslación, rotación y vibración) y de la energía potencial intermolecular (debida a las fuerzas intermoleculares) e intramolecular de la energía de enlace.
  • En un gas ideal monoatómico bastará con considerar la energía cinética de traslación de sus átomos.
  • En un gas ideal poliatómico, deberemos considerar además la energía vibracional y rotacional de las mismas.
  • En un líquido o sólido deberemos añadir la energía potencial que representa las interacciones moleculares.
Desde el punto de vista de la termodinámica, en un sistema cerrado (o sea, de paredes impermeables), la variación total de energía interna es igual a la suma de las cantidades de energía comunicadas al sistema en forma de calor y de trabajo  (en termodinámica se considera el trabajo negativo cuando este entra en el sistema termodinámico, positivo cuando sale). Aunque el calor transmitido depende del proceso en cuestión, la variación de energía interna es independiente del proceso, sólo depende del estado inicial y final, por lo que se dice que es una función de estado. Del mismo modo  es una diferencial exacta, a diferencia de , que depende del proceso

Cantidad de calor

Cantidad de calor

Cuando una sustancia se está fundiendo o evaporándose está absorbiendo cierta cantidad de calorllamada calor latente de fusión calor latente de evaporación , según el caso El calor latente, cualquiera que sea, se mantiene oculto, pero existe aunque no se manifieste un incremento en la temperatura, ya que mientras dure la fundición o la evaporación de la sustancia no se registrará variación de la misma.
Para entender estos conceptos se debe conocer muy bien la diferencia entre calor y temperatura .
En tanto el calor sensible es aquel que suministrado a una sustancia eleva su temperatura.
x
Calor: una forma de energía.
La experiencia ha demostrado que la cantidad de calortomada (o cedida) por un cuerpo es directamente proporcional a su masa y al aumento (o disminución) de temperatura que experimenta.
La expresión matemática de esta relación es la ecuación calorimétrica:

Q = m·Ce·(Tf-Ti)

En palabras más simples, la cantidad de calor recibida o cedida por un cuerpo se calcula mediante esta fórmula, en la cual es la masa, Ce es el calor específico, Ti es la temperatura inicial y Tf la temperatura final.  Por lo tantoTf – Ti = ΔT (variación de temperatura).
Nota: La temperatura inicial (Ti) se anota también comoo como .
Si Ti > Tf el cuerpo cede calor Q < 0
Si Ti < Tf el cuerpo recibe calor Q > 0
Se define calor específico (Ce) como la cantidad de calor que hay que proporcionar a un gramo de sustancia para que eleve su temperatura en un grado centígrado. En el caso particular del agua Ce vale 1 cal/gº C ó 4,186 J.

Calor



Si se tiene un cuerpo en equilibrio termodinámico y se le deje en un medio que tiene una temperatura diferente, se produce una transferencia de energía entre el cuerpo y los alrededores hasta que se alcanza el equilibrio térmico, es decir, hasta que ambos están a la misma temperatura, en cuyo momento cesa la transferencia. Se dice que la energía se ha transferido en forma de calor. La termodinámica estudia los estados de equilibrio y nos permite por la primera ley, determinar la diferencia de calor entre el estado 1 y el estado 2, tanto del cuerpo, como del medio en que se le sumergió. Si se admite que no ha habido más interacción que la debida a la diferencia de temperatura, la variación de energía interna del cuerpo y del medio son iguales y tanto una como la otra, informan sobre la cantidad de calor necesaria para pasar del estado 1 al 2, pero no nos dicen nada de cómo ha sido el flujo de calor entre ambos estados, ni cuál ha sido el tiempo necesario para la transferencia.
{\displaystyle dQ=dU=U_{2}-U_{1}}
Como forma de energía, el calor tiene unidades de energía, por lo que si nos atenemos al Sistema Internacional de Unidades, se medirá en Julios J.[7]​ Teniendo en cuenta que esta unidad es muy pequeña y que la unidad de masa es el kg, se toma normalmente el kilojulio {\displaystyle kJ}, que definido como calor sería:
Un kiloJulio es el calor que hay que transferir a 1 kg de agua para aumentar su temperatura 0,24 K aproximadamente.[8]
Cuando es necesario conocer el flujo de calor o cantidad de calor transferido por unidad de tiempo, lo que se busca es {\displaystyle dQ/dt} y se medirá en {\displaystyle kJ/s}, es decir, en {\displaystyle kW}. El cálculo del flujo de calor y de sus modos de transmisión no corresponden a la termodinámica, sino a otra parte de la física que es la Transferencia de calor.
El calor es una magnitud con dirección, por tanto es necesario darle un signo para completar la información. No hay un acuerdo total sobre el signo convencional, pero el más aceptado es:
La transferencia de calor hacia un sistema es positiva y la transferencia de calor desde el sistema es negativa.[9]

CalorimetríaEditar

Para determinar de manera directa el calor que se pone de manifiesto en un proceso de laboratorio, se suele emplear un calorímetro. En esencia se trata de un recipiente que contendrá el líquido en el que se va a estudiar la variación de energía por transferencia de calor, cuya envolvente debe estar perfectamente aislada para garantizar que el proceso se acerque lo más posible al adiabático.